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“Geometry,” in the sense of the classical differential geometry of smooth manifolds

(CDG), is put under scrutiny from the point of view of Abstract Differential Geometry

(ADG). We explore potential physical implications of viewing things under the light

of ADG, especially matters concerning the “gauge theories” of modern physics, when

the latter are viewed (as they are actually regarded currently) as “physical theories of a

geometrical character.” Thence, “physical geometry,” in connection with physical laws

and the associated with them, within the background spacetime manifoldless context

of ADG, “differential” equations, are also being discussed.
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“
>
αεί

<
o θεóς γ εωµετρει̃”

(:“eternally the God geometrizes”)

1. By looking at the previous famous utterance (attributed to Plato ac-

cording to Plutarch—cf., e.g., Smith (1958, p. 88, ft. 4)), as in the frontispiece

above, by also taking into account our nowadays perception of Physics, we can

say that;

(1.1) “physical geometry” is the outcome of the physical laws.

In this regard, one might also refer here for instance to M. Faraday, as he is quoted

by Weyl (1952, p. 169), holding that (emphasis below is ours):
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(1.2)

“. . . not the field should derive its meaning through its association with

matter, but, conversely, . . . particles of matter are . . . singularities of the

field.”

Now, by looking at the technical correspondence/association,

(1.3) physical law ←→ A-connection,

one realizes that (1.1) might also be construed, as an equivalent analogue of

the implication;

(1.4) A-connection (:physical law) =⇒ curvature

(: “geometry,” alias, “shaping”).

Thus, to repeat (1.1) in a different manner, one can maintain that;

(1.5)
it is actually the physical laws that make what we might call,

or theoretically construe as, (physical) “geometry.”

Let it be noted here that in the terminology above, we take for granted the meaning

of the technical term “A-connection,” about which we refer for instance to Mallios

(1998), or even to Mallios (1998b, 2005).

Now, it is worthwhile to comment further here on the inverted commas put

over the word,

(1.6) geometry.

“Geometry” is a composite Greek word (:
εω − µετρία), the second com-

ponent being the verb “metrō” (:measure) indicating a technical and fundamental

fact: our close entanglement in our measuring activities with the subject matter

that we measure (here, 
αία: Gk. for Earth). In this semantic light, any time the

notion of “geometry” is being referred to or used, by definition (viz. by the very

semantic essence of the word),

(1.7)

it is not supposed to actually correspond to something physical

(:real), but simply to a model of ours—one pertaining to

the description of reality (whatever sense we give to the latter concept).

In this line of thought, it is appropriate to recall A.Einstein’s maxim, that;
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(1.8)
“Time and space are modes by which we think,

not conditions in which we live.”

See for instance Manin (1981, p. 71), as well as, in the same vein, (4.29) in the

sequel. [Emphasis in (1.8) above is ours, as it will also be occasionally the case

with various quotations in the sequel]. Still, we should mention here the relevant

remarks of Bergmann (1979, p. 33), that,

(1.9)
“Einstein . . . did not consider geometrization of physics a foremost

or even a meaningful objective. . . ”

(I am indebted here to I. Raptis for bringing to my attention Bergmann’s words

above). Yet, Bergmann, in the same context of Einstein’s unitary field theory

(loc. cit.), also insists that what is of importance is

(1.10)
“. . . not a geometric formulation or picturization but a . . . fusing of

the mathematical structures intended to represent physical fields.”

We remark here that the remarks above are still in accord with (1.1) or (1.5) in the

preceding. Thus, we are led again here to propound a

(1.11) “relational aspect” of what one might call “physical geometry.”

In other words, we thus arrive at something which is closer to what we meant by

(1.5). Furthermore, this same aspect is also akin to what we actually understand,

as we shall also see later on, when we are talking about

(1.12)

“geometry,” determined by “differential” equations—still more,

one that corresponds to the “solution space” of the latter. The same

idea might be regarded as the source(!) of the “cartesian point of view”;

however, see (1.14) in the sequel regarding our stance against that pers-

pective within the present abstract (thus, space-independent (!)) setting.

So, within the aforesaid context (see also e.g. (1.11)), we can further maintain

that;

(1.13)

“geometrization” of physics effectively means “arithmetization”

of physics, for our “geometry” is, in effect, “arithmetical,” that is,

“cartesian”(!) in character; hence not a physical (:natural) one!
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Consequently, one comes to realize that

(1.14)
the previous association becomes thus more natural, to the extent

that it is of a more “relational”(!) nature.

However, what is also here of particular physical significance concerning the whole

subject matter of the present work, the preceding point of view, as expressed in

(1.12), is actually meant in an

(1.15)
entirely “space independent” way, that is,

not in a “cartesian-type” of manner.

This will become clearer, along with the terminology applied herewith, via the

subsequent discussion. Otherwise put, based on the abstract formalism of the

technique of Abstract Differential Geometry (ADG), one is able to

(1.16)
formulate “differential” equations without resorting to any

background (“cartesian”–“newtonian,” so to say) “space(time).”

This, as we shall see in the sequel, is of paramount significance to various problems

that quantum gravity currently encounters, when these problems are viewed from

the standard perspective, viz. from the one of the classical differential geometry

of smooth (:C∞-)manifolds (CDG).

So, in accordance with (1.11), one arrives at a “leibnizian,” so to say, point

of view. That is, following Leibniz himself,

(1.17)
we should find a “geometrical calculus” that operates directly on the

“geometrical objects” without the intervention of coordinates.

We may further remark in this respect that the said “intervention of coordinates”

has been viewed in the past as

(1.18) “. . . an act of violence.”

See thus Weyl (1949, 90). At the same time, concerning (1.17), cf., for

instance, Bourbaki (1970, Chapt. I; p. 161, ft. 1). Furthermore, within the same

context, one has here the relevant remarks of B. Riemann;

(1.19)
“Specifications of mass [:measurements] require an independence

of quantity from position, which can happen in more than one way.”
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Cf., for example, Mallios (2004, (1.3)). Thus, in toto, the preceding sustain the

viewpoint that:

(1.20)

the description of the physical laws (something that could also apply

to the quantum régime) should be made in such a manner that

no supporting space or background scaffolding (:framework) essentially

contributing to that description, is to be included in our “calculations”

(:rationale); hence, the latter have thus to be entirely independent

of any notion of “space” of the aforesaid type.

Now, the aspect of “description of physical laws,” as we saw previously in (1.20),

can be conceived as just referring to the very “geometrical calculus” envisioned

by Leibniz (cf. (1.17)), hence to the same “geometry”(!) in Leibniz’s sense of the

word—ie, to viewing geometry from a “relational point of view,” according to

(1.11). Furthermore, the same perspective on

(1.21) “geometry,” as “description(study) of physical laws,”

leads straightforwardly to the custom of

(1.22)
doing “geometry” via “differential” equations (a fact that actually

goes back to René Descartes himself: “Analytic Geometry”),

as already hinted at by (1.12). We are going to comment further on the latter aspect

within the present abstract setup of ADG in the next Section, also clarifying further

our previous remarks in (1.16) above.

2. “Differential” Equations in the Setting of ADG. Functoriality.− As

already mentioned above, our aim in the following discussion is essentially to

clarify (1.16), and to dwell further on its consequences:

Thus to begin with, we can emphatically remark that, thus far, one of the

most effective methods of describing physical laws has been the one employing

“differential equations.” In turn, the latter constitute the pillar application of

the (classical) differential geometry (CDG), or Calculus(!)—still more, of “the

glittering trappings of Analysis,” to recall here G. D.Birkhoff’s expression (see

for instance Weinstein (1981, p. 1, ft.2]).
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However, the latter (viz. the classical, CDG-theoretic) way of describing

physical laws, contains in itself the seeds of its own faults (:pathologies), simply

by virtue of our previous remarks, as in (1.20), regarding the background “space”

(:manifold) employed by CDG. Indeed, by the very essence of the classical theory

(:CDG), its whole machinery (mechanism), is vitally rooted on the supporting

space (viz. on the “locally euclidean” smooth manifold). Accordingly, as a result

of (1.20), one concludes that,

(2.1)

the notion of a (locally euclidean–smooth–) manifold proves thus not

to be the appropriate one for describing physical laws

(:“physical reality”), insofar as the latter refers to the quantum deep.

In this context, we may still recall the relevant comments of A. Einstein himself,

pertaining to the

(2.2) inappropriateness of the manifold concept for physical reality(!).

See for instance Mallios (2006b, (1.6)). At the same time, one can further maintain

that,

(2.3)

the aforementioned shortcoming of the notion of smooth manifold in

various problems of describing physics in the quantum domain is mainly

due, not only (!) to the way we consider the “differential-geometric” mec-

hanism as arising within the context of CDG (see (3.3) in the sequel), but

(2.3.1)

much more, because we insist on keeping as a “working

framework” the whole “space”—viz. the entire smooth

manifold background arena; and what’s more,

by regarding the latter, even locally, as the domain of definition of what

we define as “differentiable functions.”

Now, the point mentioned in (2.3) above, proves to be, by the concrete work-

ing examples presented below, quite an unnatural way of trying to apply the

“differential geometric mechanism” of CDG, since the latter’s character is en-

tirely algebraic(!), as we are going to clarify further in the sequel. Moreover,

the same situation occurs when we are confronted with an extremely pestilential
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anomaly of the classical theory, in particular when we insist on applying the latter

to the quantum deep. Indeed, this anomaly usually manifests itself in the guise

of “infinities” (:“singularities”)! However, all these anomalies, be as they may

from the CDG-theoretic vantage, are not actually real (!) (cf. the aforementioned

examples, as will be presented in what follows).

On the other hand, we shall further illuminate the situation that appears

within the quantum framework, when looking at it from the point of view of

the abstract theory, by briefly summarizing the relevant conclusions into the

following.

Scholium 2.1.− When looking at the fundamentals of quantum theory, in con-

junction with potential applications in that context of (differential) geometry, one

actually realizes that;

(2.4)

we usually associate numbers (à la Descartes) to a space that, in effect,

does not exist(!). And it does not, at least in the sense that we ascribe

to it our own “spatial perspective” which is, in point of fact,

always cartesian(!). Of course, this subjective perspective turns out not

to be in accord with our (experimental) knowledge about

physics in the quantum régime.

Thus, we are indeed trapped here by our own perspective, our own assumption of a

background “locally euclidean,” viz. “newtonian,” in character “space”, via which

we look at and actually exercise (:implement) our “differential calculus.” This,

plainly, results in the pseudo-physical correspondence manifold ↔ spacetime,

which has stymied our theories of the quantum domain in the form of the aforesaid

anomalies. In summa, we are

(2.5)

unable to apply the classical (:newtonian) aspect of differential geometry

in the “quantum deep,” due mainly to the emergence of the so-called

“singularities,” and other relevant anomalies. [As already noted several

times in the preceding, the latter phenomenon is actually due to the

particular type of our (“smooth”) functions involved, that “smoothness”

being in turn a direct reflection of the sort of “space”

(:locally euclidean) we use!].
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Consequently, to stress it once more,

(2.6)

from the “leibnizian” (:relational) vantage of ADG, it is not the functions

we use (viz., when regarded as the carriers of the “differential geometric-

mechanism” which are inappropriate concerning physical descriptions

in the quantum deep, but, simply, the “space” on which the said functions

are supposed to be defined. Such a space, as that one we try to apply

(viz. the “locally euclidean” one), is physically non-existent(!); it is

we that insist on trying to formulate our physical descriptions (:theories)

of the quantum domain by a priori forcing it into them.

In this and in a wider context, given that, an “arithmetical space,”

as it actually is the standard “euclidean/

cartesian space” which we traditionally employ in the classical theory

(:CDG), is not “physical” (:real)(!) in view of the troubles (:singularities,

infinities, and other anomalies) we get when we apply it to our attempted

descriptions of the “quantum deep.”

[We thus get, in this respect, even an “experimental” (:concrete)

manifestation of the ineffectiveness of our (spatial) model!].

That is, the “space” model we usually assume in our physical

theories—which we seem to persistently identify

with “physical space”—is entirely a numerical one.” In this

identification, we are largely influenced (or even, biased!)

by the formidable successes the manifold model has so far enjoyed in

our “macroscopic” theories. This model, however, proves inadequate, and

at times it “collapses,” when confronted with physics in the quantum

deep.

So, in other words, we are thus entrapped by the particular (experimental) suc-

cesses that the aforesaid point of view (:the classical one) has enjoyed in the past,

namely, those concerning our experience/applications “in the large” (:macroscop-

ically).

Now, within the same vein of ideas, and still in connection with the essentially

(categorical) correspondence between “space” and functions, one actually has the
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following “identification,”

(2.8) functions ←→ space, “Gel’fand duality”

which we may also call (as noted above), “Gel’fand duality,” a fact explicitly

pointed out, in its full generality, by the language of the theory of (especially,

non-normed) Topological Algebras (see, for instance, A. Mallios [TA; p. 223,

Theorem 1.2, as well as, p. 227, Theorem 2.1]).

Now, as already hinted at in the foregoing, something which will also be considered

in the ensuing discussion, the previous situation has effectively nothing to do with

the mechanism itself of the aforesaid classical theory (:differential geometry), with

the latter machinery being essentially “leibnizian”(!) in nature. Precisely this has

been pointed out time and again by what we may call “Abstract Differential

Geometry” (:ADG); see thus Mallios (1998b), as well as Mallios (2005).

In toto, the preceding represent the way one may look at what we usually

understand nowadays by the term “space” (speaking, of course, within the context

of what is called “mathematical physics”). The fact is that the previous thoughts

are the outcomes (the distilled didactics) of our experience with ADG as a general

theoretical framework, while the same didactics can be drawn from numerous

applications of the theory to problems in “quantum relativity” Finkelstein (1997),

as the latter has been explained already in other places (see, for instance, Mallios

(2005), as well as, Mallios and Raptis (2003), (2005)). So it is this entirely new

(axiomatic) perspective of ADG, pertaining to the inherent mechanism of the clas-

sical differential geometry (:CDG), which provides several potential applications

to quantum gravity, while the same mechanism may also prove to be in accord

with the “spatial” situation one is confronted with physics in the quantum deep, as

already hinted at above; in this regard, see also e.g. Mallios and Rosinger (2001),

along with Mallios and Raptis (2005). Further illuminating comments on this last

issue are going to be presented through the discussion in the sequel.

On the other hand, by looking at the whole classical set-up from the point

of view of ADG, we can further point out here that in complete contrast to the

classical case,
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(2.9)

the framework of ADG does not, as a matter of principle, depend on any

background “space” (:carrier, think e.g. of “space-time” in the classical

domain) which would contribute to its “differential” mechanism, the latter

being thus entirely rooted on A(!)—our “generalized arithmetics,” alias,

“sheaf of coefficients.”

Moreover, the issue in (2.6) above constitutes

(2.10) the quintessence of the quantum field-theoretic character of ADG.

Indeed, the whole set-up of ADG avails itself for

(2.11)
formulating our equations in a quantum field-theoretic manner,

viz. quantum-relativistically!

In connection with this, see also our previous relevant remarks in Mallios (2004,

(9.8), (9.23), along with Section 11 therein). Yet, to state the point above in an

equivalent way;

(2.12)

it is actually we who express the (physical) laws as “differential”

equations by means of our “arithmetics”—in our case, through the

(C-algebra) sheaf A. At the same time, the same machinery (:calculus,”

à la Leibniz, or even “differential geometry”) is based on A, and not at

all on any background “space” as in the classical case (:CDG).

Of course, the latter fact is of paramount importance, when we are

confronted with quantum gravity problems.

In the same line of thought, one may quote some remarks of Baez from (1994,

beginning of Preface), holding that (emphasis below is ours):

(2.13)

“A fundamental problem with quantum . . . gravity . . . is that in

. . . general relativity there is no background geometry to work with:

the geometry of spacetime itself becomes a dynamical variable.”

On the other hand, the aforementioned (see (2.9), (2.12))
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(2.14)

independence of the “differential” mechanism of ADG from any

background space, enables us to regard that mechanism as a “variable”

entity too—this being the case by its very “construction”, since it is

entirely based on (reduced to) A. Thus, what we also understand as

“differential” geometry (:“geometrical calculus,” à la Leibniz) which

goes hand in hand with the said mechanism, can also be regarded as

being “variable.”

Furthermore, something that is also fundamental in this respect, the same

“geometrical calculus” (hence the concomitant “geometry” too) becomes simply

“relational,” as it refers directly to the “geometrical objects” (in our case, the vec-

tor sheaves) themselves, without the interference of any “space” in the classical

sense of the latter term.

In connection with the above, we may also recall for our convenience that,

technically speaking, here we suppose that we are thinking in terms of an (abstract)

“differential setting,” based on a given “differential triad,”

(2.15) (A, ∂,�)

over an (arbitrary, in general) topological space X, which in turn serves as the base

space of all the sheaves involved throughout the theory. Now, within this context,

a “geometrical object”—eg, an elementary particle—can be associated with what

we call a Yang-Mills field, viz. a pair

(2.16) (E,D),

consisting of a vector sheaf E on X and an A-connection D on it; see e.g. Mallios

(2006b (3.2), (3.3)), or even (Mallios, 2005: Vol. II, Chapt. I). It is actually in

terms of such pairs as the one above that “differential” equations are set up in the

framework of ADG (loc. cit.).

Thus, within the above framework, we can further refer here to a fun-

damental principle underlying thus far the whole ADG-machinery, namely,

that;
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(2.17)

everything that we want to ascribe to a pair (E,D), as above, is

virtually reduced to a similar condition/asumption for the pair (A, ∂)

(see (2.15)). Occasionally, the said reduction can be effectuated under

appropriate, in principle only(!) topological, hypotheses for X

(see also the comments below).

As already noted before, the context of (2.17) exhibits, in point of fact, the “Leit-

motiv” that actually dominates the very technique of ADG; see thus Mallios [VS],

or even Mallios (2005). On the other hand, the same ensures also the

(2.18) “covariance” of the whole setting of ADG, with respect to A.

Thus, the “variance” here is always relative to our own “arithmetics,” or even

(generalized) domain of coefficients,” yet, “structure sheaf” A, which is by as-

sumption a unital commutative C-algebra sheaf on X; see (2.15). So, strictly

speaking it is we who measure(!)/calculate, while, and this is of special signifi-

cance as noted earlier, the whole framework/calculations of ADG is effectuated

without leaning upon any background “space” (:carrier), as for instance the back-

ground “space-time”(!) of the classical case.

On the other hand, we can further say that;

(2.19)
physical laws are always “functorial”, this being the only way

we actually perceive them!.

Of course, in the statement above we essentially “abuse language,” as we

explain below.

Note 2.1.− Looking at the sense in which we actually use the term

“functorial”

as in (2.19) above, and also taking into consideration

(1.2) earlier, it should be pointed out here that;

(2.20)
the aforesaid term is always meant with respect to us(!), viz.,

relative to (our “generalized arithmetics”) A.

Therefore, what we actually consider in (2.19) is the manifestation of the

physical laws! Indeed, their description, expression, hence also their potential

application (: effectuation) via A!
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Now, this goes hand in hand with (or even, it is something that is in point of

fact an equivalent expression of) the “principle of general covariance” of general

relativity. Accordingly, by considering, as we did it in the preceding, differential

equations as expressing physical laws (see (1.5), (1.12)), we realize that, indeed,

(2.21)

differential equations should be, by their very definitions,

“functorial” in nature! Consequently, their formulation should be

made in terms of “functorial objects.”

Now, by the last term, technically speaking, we mean something that by definition

is A-invariant; alias, a “tensor,” in the sense that it respects our “arithmetics” A.

Furthermore, (2.19) can still be construed, as a corollary of (1.2), together

with (1.5) in the preceding. Thus, by further considering (see also (2.20) above)

the

(2.22)

physical laws, as the manifestation of the (deepest physical) dynamics

(:“causality”), one comes to the conclusion that;

(2.22.1) “dynamics” should be “functorial,” as well,

whenever we actually effectuate it (viz. the physical law, cf. also (1.4)).

Therefore, this very realization or representation of it (by us(!),

of course) becomes “functorial,” or even “tensorial” too; hence, the

same physis of the curvature (:“geometry”), see also (1.4), as before.

Now, further commenting on our last conclusion above, we may still recall that,

according to our axiomatics,

(2.23)

the curvature (:field strength) is the manifestation (effectuation,

realization or representation) of the “identification”

(correspondence, cf. also (1.4)),

(2.23.1) dynamics (:“causality”) ←→ (A-)connection, therefore

(see also (2.22.1)), the tensorial (functorial, cf. (2.20))

aspect of the curvature.

In connection with the above, we can still note that the aforementioned functo-

rial/tensorial character of the curvature in the sense of (2.20), which is always
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the outcome (field strength) of a given “field” (:A-connection, see, for instance,

Mallios (2006b, (3.15)) or even (Mallios (2004), (3.21.1))), is further expressed

by the familiar relation,

(2.24) ∇ρ = 0,

yet, equivalently (in ADG-theoretic terms), by the relation;

(2.25) DHom(E,E∗)(ρ̃) = 0,

where we still have;

(2.26) Hom(E, E∗) = E∗ ⊗A E∗ = (E ⊗A E)∗.

See A. Mallios [VS: Chapt. VII; p. 165, (8.70), along with Chapt. IV; p. 302,

Theorem 6.1 and p. 305: (6.16)]; thus, we have herewith the so-called, classically,

“Levi-Civita identity.” By further referring to the above notation, we consider

therein a given Yang-Mills field

(2.27) (E,D),

see loc. cit., Chapt. IX; p. 244, along with (2.15), as above, while ρ stands

there for a Riemannian A-metric on E , “compatible with D” (ibid., Chapt. VII;

Section 8). It is worth noticing here that the previous condition on the pair

(2.28) (D,ρ),

as above, is actually the upshot of a similar assumption for the standard pair,

(2.29) (A, ∂),

cf. (2.14), under appropriate supplementary conditions on the items involved

herewith, these being in the case of X, only topological ones (cf. thus (2.16) in

the preceding); yet, in that context, see also A. Mallios [VS: Chapt. VII; p. 168,

Theorem 9.1: Fundamental lemma of Riemannian vector sheaves]. Accordingly,

we further understand here that (: the “physical significance” of (2.25)),

(2.30) to “realize” the curvature, one has to “compare” it with something else!
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We terminate the present Section with the following remarks of N. Bohr, as quoted

by Auyang (1995, p. 229)), referring to the way one actually has to “look at” the

Nature; indeed, with the same remarks the foregoing rationale and related remarks

thereon are really in accord, as it actually concerns our relevance, with respect to

the observed physical laws, which, technically speaking, as it was pointed out in the

preceding, is expressed, in effect, through the “structure sheaf” A, independently

of any surrounding/supporting “space.” Thus, according to the aforementioned

remarks (emphasis below is ours),

(2.31)
“It is wrong to think that the task of physics is to point out how

nature is. Physics concerns what we can say about nature.”

Consequently, to follow in that context the favorite expression of A. Einstein

himself, we thus always “describe,” not explain (!), the physical applications

of every day life being, therefore, simply consequences of the former (descrip-

tions), as above(!). Yet, within the same vein ideas, we may still quote, herewith,

Wittgenstein (2003, p. 17), in that;

(2.32)
“Physics does not explain anything; it simply describes concomitant

cases.”

(Emphasis above is ours). Therefore, as already emphasized in the preceding, we

do not actually explain “anything,” through Physics as far as the physical laws

(:physis) are concerned, but we just describe/study their consequences(!) In spite

of the latter function, it undoubtedly appears (see applications) that,

(2.33) we do understand, to a certain extent(!), the way that these laws work!

3. ADG as a Scheme Applicable in the Quantum Deep.− Our purpose,

by the ensuing discussion, as the title of this Section indicates, is to further clarify

the way one can look at a potential application of ADG in the quantum régime,

thus, in point of fact, of the very mechanism of the classical (:“newtonian”) differ-

ential geometry, very effective(!), for that matter, so far, however, now, within the

aforesaid domain, but, already from the point of view of ADG (viz. axiomatically),

thus, freed from its “beautiful shackles” (C.J.Isham); indeed, it is proved that the

latter obstacles are due, simply, to the entanglement, according to the classical the-

ory, of the same mechanism with the “locally euclidean” nature of that theory (in
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effect, much more, because of the maintenance of the whole “smooth setting”, as a

working framework, in this context, cf. also (2.3) in the preceding), the latter being

also considered, in view of the same standard theory (CDG), the only source(!),

within that context, of the all powerful (infinitesimal/integral) Calculus, hence, of

the classical differential-geometric machinery, as well. So, it is here exactly that a

supreme didagma of ADG comes just to the foreground, in fact;

(3.1)

the differential-geometric mechanism of the classical differential

geometry (CDG)–being, in effect, of a leibnizian character–can,

equally well, be supplied, by other sources, apart from a “locally

euclidean” space/(smooth) manifold, its existence being thus

independent of any such “space.”

Furthermore, as already pointed out in the preceding (see, for instance, the quoted

citations, in that context, of Einstein, Feynman, Isham), a “space,” as in the latter

part of (3.1), together with its “differential set-up,” is entirely out of the question

for the quantum deep(!).

On the other hand, by further commenting, within the preceding vein of

ideas, on the basis of our experience from ADG, as exposed above, we realize that

one can virtually interrelate well-known phenomena in the past with still existing

tendencies in quantum physics of today:

Thus, the heuristic opposition of Einstein against Quantum Field Theory

(:“the other Einstein,” see e.g. Stachel (1993, p. 283, 285)) might also be viewed,

apart from other physical reasons, still, as an outcome of the failure of classical

differential geometry –hence, in particular, of general relativity too– as it concerns

the way the inherent in that theory (differential) “Calculus” is supplied, to cope

with problems of the quantum theory. Indeed, we can further say that, looking at

the same classical (:“newtonian) manner of definition of the “derivative,”

(3.2)

Einstein was demanding, within that framework, to abandon, even the

notion of continuity(!) in physics, having thus, instead, to invent a

“purely algebraic physics” (loc. cit., p. 285). Moreover, we could add

to his imperative in view of the above, we should look for a (purely)

algebraic analysis(!)
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In this connection, we can certainly refer here, as already done in the preceding,

to the relevant remarks thereof of Feynman (1992, p. 166), as well as, to those of

Isham (1984, p. 393) (in this regard, see also e.g. Mallios (2006b)), concerning

the ineffectiveness of the classical differential geometry, and in extenso of that

one of a smooth (:C∞-)manifold, within the quantum régime (yet, see (2.3) in the

foregoing, along with our discussion in the subsequent Section 4).

On the other hand, the pertinence, in that context, of ADG to confronting with

problems of quantum gravity still lies in its algebraic (viz. “leibnizian,” so to say)

character: Indeed, the whole edifice of ADG is, by its very construction, sheaf-

theoretic, sheaf theory being, of course, of an algebraic nature (see, for instance,

Grauert and Remmert (1984, p. VII)). Thus, ADG might also be construed, as an

(3.3)

algebraic (:“leibnizian”) manner of presenting the fundamentals of the

classical differential geometry, while, at the same time, still getting, as an

outstanding outcome (see, for example, (2.22), as well as, (2.1) in the

preceding), the possibility of working, without any resort to a background

“space,” in the classical sense of the latter term, as for instance, to a

“space-time continuum”(!), as it happens, instead, in the standard theory.

Certainly, the significance of the aforementioned two issues of ADG cannot be

underestimated, while the same might be, in effect, quite well, what A. Einstein

himself, by 1935 already, was looking for (see, for instance, still, Stachel (1993,

p. 285), as above).

4. Particular Potential Applications of ADG in the Quantum Régime.−
We start, by presenting, within the framework of ADG, the relevant theory of

Elemér E. Rosinger, pertaining to “generalized functions,” whose algebra (sheaf ),

in particular, the “foamy” one, can be used, as a “sheaf of coefficients,” defining

thus, appropriately, a corresponding herewith “differential triad,” basic ingredient

to having a set-up in developing the mechanism of ADG (see (2.9), (2.20) in the

foregoing). For similar previous accounts, see also Mallios and Rosinger (1999,

2001), as well as, Mallios (2005, Vol. II, Chapt. IV; Section 5).

However, before we come to the relevant exposition, it is still to be noticed,

herewith, a fact of a particular significance, referring to the very structure of ADG
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(cf. (4.1) below, along with Subsection 4.(b) in the sequel), as it concerns two im-

portant special cases of the general theory of ADG, we are going to consider,

by the subsequent discussion; the same are also characteristic of the way, one

may have a “differential-geometric mechanism,” in the sense of ADG, different,

in character, from the classical manner of obtaining it (viz., via smooth manifolds,

but, see also (4.1), along with (4.11) below). So it is, indeed quite useful (yet,

rather, necessary(!)) to make the following remarks. That is,

(4.1)

even, if we take, as the base space of the sheaves involved, within the

abstract context of ADG, a (smooth) manifold X, in the standard sense

of this term (cf. thus the ensuing two Subsections below), its rôle

(:as the source of Calculus) is actually transferred now to the “sheaf of

coefficients,” A. Yet, this is very organic, since it is essentially we(!),

who make the calculations/experiments, based on our own “arithmetics,”

viz. for the case in hand, again, via the algebra sheaf A.

Therefore,

(4.2)

the manifold X, as in (3.1) above, is just viewed, simply, as a particular

topological space, being, of course, by its very definition, paracompact

(Hausdorff ); the latter condition is certainly, otherwise, very useful,

indeed, when referring to cohomological issues: sheaf cohomology is, for

that matter, apart from sheaf theory itself, the other fundamental

ingredient of ADG. Yet, it may still happen that the topology of X be

chosen quite different from the initial, viz. the standard topology of the

manifold X, i.e., the “locally euclidean” one); see, for instance, “Sorkin’s

topology” in Subsection 4.(b) below.

However, as we shall see, by the ensuing discussion, the particular cases we look

at in the sequel, do have, so to say, a

newtonian spark (!), (4.3)

that is, something of a “starting point,” that will become better clear, by the

subsequent rationale. Notwithstanding, as we shall also realize, in that context,
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(4.4)
this does not affect, at all(!), the “leibnizian” character of the mechanism

of ADG,

as the latter is inherently afforded, by the same two particular subsequent examples

of the general theory.

The preceding certainly constitutes a fundamental special issue of paramount

importance, indeed, for potential applications; the same could still be worthwhile

to be viewed axiomatically(!), as well, contributing thus to our knowledge, as it

concerns the whole character of the general theory. In this regard, see also our

previous account thereof, already in Mallios (2005, Vol. II, Chapter IV; Section

5).

Note 4.1.− By still referring to our previous issue in (4.3), as we shall

see, by the ensuing examples the so-called therein “newtonian spark” not

only supplies the “structure sheaf” A, by the “spark” (fuse) of its

“differential” mechanism, but what is, in effect, herewith of a particular

importance, is that one assures, in that context, the validity of Poincaré

Lemma, indeed, of an extraordinary importance of the whole mechanism

of ADG. Thus, one can complete (4.3), by actually setting the equivalence;

(4.5) “newtonian spark” ⇐⇒ Poincaré Lemma.

So here again one realizes the fitness of

(4.6)
replacing of the “geometric character,” locally(!), of classical analysis,

by cohomological issues.

However, more on this we shall see in the pertinent places below.

Thus, we come now to examine our first Example, pertaining to the situation

described by (4.3), (4.5) above, straightforwardly, by the ensuing Subsection:

4. (a). Rosinger’s Algebra Sheaf.− Here the aforementioned already “new-

tonian spark,” as in (4.3) above, is nothing more, as we shall presently see, right

below, than the classical

(4.7) “dx”

of the standard theory of C∞-manifolds. Thus, the above classical “dx” is, for the

case at issue, prolonged, true, it is, in point of fact, “promoted”(!), so to speak, to
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an abstract,

(4.8) “∂”

in the sense of ADG (see, for instance, (2.14) in the preceding), defined now on an

algebra sheaf (Rosinger’s), containing the standard one C∞
X , viz. the C-algebra

sheaf (of germs of C-valued smooth functions [R-valued functions could also

be considered, of course]) on a given manifold X. Indeed, we can still say, in

anticipation, that Rosinger’s algebra sheaf And, and, i n e x t e n s o Afoam (see

(4.20), (4.21) in the sequel) contain much more than C∞
X of the classical theory

(cf. thus (4.14) below). We depict the above, by the following diagram, whose

notation will become more clear, through the ensuing discussion. Thus, we have;

(4.9)

And
�

∂
�1

nd ≡ �1

�

⋂

�

⋂

C∞
X

�d
�1

X

We proceed, by explaining the notation applied in (4.9); thus,

(4.10) And ≡ A,

stands therein for Rosinger’s algebra sheaf a C-algebra sheaf on X, the latter

space being, by assumption, an open subset of R
k . However, since the whole theory

is, in point of fact, of a local nature, one may consider, instead, R
k just locally,

that is, we can assume that X is a smooth (:C∞-)manifold. Notwithstanding, for

simplicity’s sake, we adopt, throughout, that

(4.11) X is open in R
k.

Accordingly, X being, by its very definition, a metrizable space, one concludes,

in particular, that
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(4.12) X is a paracompact Hausdorff (topological) space.

See, for instance, Dugundji (1966, p. 186, Theorem 5.3).

Now, Rosinger’s algebra sheaf A ≡ And , as in (4.10) above, is actually an

appropriate (cf. (4.13) in the sequel) quotient of a functional (algebra) sheaf :

thus, technically speaking, it is defined, as a quotient of a functional (algebra)

presheaf, the latter being proved, in particular, to be a “complete” one, therefore

(J. Leray), a sheaf. Yet, the corresponding, in that context, quotient algebras

are defined, modulo a suitable (2-sided) ideal (:“Rosinger’s ideal”), which is

essentially characterized, by what we may consider, as “Rosinger’s asymptotic

vanishing condition”; in particular, the latter is defined, via a

(4.13)

closed nowhere dense (hence, the subindex “nd”, appeared in (4.10))

subset 
 of X, the same ideal consisting thus of those functions/

elemenets of the (local section) algebras concerned, that vanish

“eventually” (w.r.t. a parameter involved, a natural number, index)

on any relatively compact subset of the complement of 
.

Concerning the precise definition of the preceding, we refer to Mallios (2005,

Vol. II, Chapt. IV; Section 5), or even (:to Mallios and Rosinger (1999, p. 236;

(2.2)). Yet, by further looking at the same sheaf (4.10), as above, and also comple-

menting the information we have through (4.9), we still note that we actually get,

by the very definition of (4.10) (cf., for instance, Rosinger (1990, p. 8; (1.2.15),

(1.2.16), along with p. 367, (2))),

(4.14) C∞
X ⊂=/ D

′
X ⊆ A ≡ And .

Here the middle term in (4.14) denotes the sheaf (of germs) of Schwartz distribu-

tions on X, viewed, as a C-vector space sheaf on X (loc. cit., (5.19)).

On the other hand, the “basic differential operator”

(4.15) ∂ : A−→�1,

that one has to define, according to the general theory of ADG, see, for instance,

(2.14) in the preceding, or even in Mallios (1998, Chapt. VI; Section 1), is here
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provided by the presence of the first member in (4.14), that is, locally, by that one

of a (C-)algebra of the form

(4.16) C∞(U ), with U open in X ⊆ R
k,

(see also (4.11)), that virtually constitutes, within the present context, the “newto-

nian spark,” hinted at in (4.3). Thus, the basic differential ∂ , as in (4.15), in now

defined coordinate-wise, along the classical patterns, since the basic constituents

of the Rosinger’s algebra (pre)sheaf are (local sections of) cartesian product

algebras of the form,

(4.17) (C∞(U ))N,

with U , as in (4.16), which then are “quotiented”, according to (4.11). Of course,

the previously coordinate-wise (classically!) defined differential passes to the

quotient. For technical details see Mallios (2005, Vol. II, Chapt. IV; Subsection

5.(b)), or even to Mallios and Rosinger (1999). Thus, the overall moral, that is

here, concluded according to the general principles of ADG, is the following;

(4.18)

Starting from any basic “differential triad,” in the sense of ADG (even a

classical one, as e.g. a “locally euclidean one, this is the case, herewith,

we can then perform any (functorial) operation, provided within the

category of differential triads, to get thus at a new one [occasionally,

more useful/flexible than the initially given one!].

Thus, by referring, in particular, to Rosinger’s algebra sheaf, as above, and the

associated with it differential triad, we remark that, in view of (4.18), what we

actually consider, in that context, is:

i) to take a denumerable cartesian product of the standard (:newtonian-

cartesian) differential triad

(4.19)
(
C∞

X , d,�1
)
,

as well as,

ii) to take, in particular, a pertinent quotient of the above, modulo Rosinger’s

ideal, as indicated by (4.13).
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In this connection, the aforesaid categorical treatment of ADG, has been

occasionally considered already in Mallios (1998, Chapt. VI; Sections 5 and 6),

as well as, in (Mallios, 2005, Chapt. I; Section 5.(e), 5.(f): “pull-back” functor];

yet, an analogous fuller and systematic categorical study of differential triads has

been recently supplied by the relevant work of Papatriantafillou (2000, 2004, in

preparation).

On the other hand, one gets at an immense generalization of the above, by

considering, in place of And , what we may call a Rosinger’s multi-foam algebra

sheaf, along with the associated differential triad,

(4.20) (B
,J , ∂,�1);

here the space X, base of the sheaves concerned, is still given by (4.11), while the

sheaf on X appeared in the first member of (4.20) is again a pertinent quotient of

the (C-)algebra

(4.21) C∞(X)
,

with 
 an upwards directed set, modulo an analogously defined (2-sided) ideal of

the same algebra, with respect to a given (upwards) directed family J of “residual”

subsets of X, the “singularity-sets” of X (viz. those A ⊆ X, with CA = X), the

applied terminology, herewith, being hinted at potential physical applications: See

Mallios and Rosinger (2001), as well as, Mallios (2005, Vol. II, Chapt. IV; Section

6). Of course, the singularity-sets, as above, generalize the notion of nowhere

dense sets, considered by (4.13) in the preceding. Hence, the increase of the types

of “singularities,” one can cope with, in the framework of ADG, as explained in

the foregoing.

Now, the same moral, that dominates our previous comments in (4.18), is, in

point of fact, as we shall presently see in the sequel, the prevalent point of view

also in the ensuing example, referring to another potential application of the very

technique of ADG in problems of quantum gravity.

4.(b). Finitary Incidence Algebra Sheaves.−Similarly to the preceding

Example 4.(a), here too, as already said, for that matter, one starts again from a

smooth (:C∞-)manifold X, that still, for simplicity’s sake, we assume that it is
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just an open subset of the euclidean space R
k (see (4.11)). However, as we shall

see, this important (:very restrictive(!), otherwise) hypothesis will finally be used,

only(!) in connection with (4.5)(!), as that was the case in the foregoing, as well:

Thus,

(4.22)
no “global use/presence” of the euclidean or even locally euclidean

space is made, at all!

This important fact, indeed, ensures actually the associated method, as it concerns,

at least, its differential-geometric nature, its potential versatility.

Now, following Sorkin (1991), one chooses the locally finite open coverings

of X (recall that the latter space is here also paracompact Hausdorff, see e.g.

(4.12) in the preceding), while one further considers on the set X the topology

generated by such locally finite open coverings of X, as above. In this connection

we also recall, for occasional use, in relation with ADG, that;

(4.23)

the local frames of a given vector sheaf on a paracompact (Hausdorff)

space X constitute a cofinal subset of the locally finite open coverings

of X.

See [VS: Chapt. IV; p. 325, (8.42), along with Chapt. II: p. 127; (4.9)]. �

Now, the previous topological spaces, that are associated with locally finite

open coverings of X, are further endowed, à la Sorkin (loc. cit.), with appropriate

partial orders, becoming thus “posets,” alias, “fintoposets,” in the terminology

of Raptis (2000) (see also Mallios and Raptis (2001)). On the other hand, these

toposets are further suitably associated with certain finite-dimensional associative

(non-abelian) linear C-algebras, the so-called “incidence Rota algebras” (loc.

cit.). The same algebras are further sheafified, the resulting sheaves leading finally

to appropriate “differential triads,” in the sense, of course, that this notion is used

by ADG (see [VS: Vol. II], along with Mallios and Raptis (2001, 2002)). Here

again, as it also was the case in our previous example in Subsection 4.(a) above,

it is of a crucial significance the

(4.24)
possibility of using the item connected with what we have called in the

preceding, “newtonian spark” (cf. thus (4.5)).
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As it was pointed out therein, the latter issue is the “source” of the “differential

mechanism,” that one is supplied with, yet within the present context too,

(4.25)

without employing, in effect, the euclidean, or even locally euclidean

nature of the origin of that particular “spark,” in the way, at least,

we are used to do it in the classical theory, thus far!

However, for the technical details thereof, we refer to the relevant work of Mallios

and Raptis (2003), along with that one of the same authors in Mallios and Raptis

(2005). We have thus herewith still another realization of the fact, being, in point

of fact, a fundamental moral of ADG (see also Mallios (2004)), that;

(4.26)

when we try to apply (differential) geometrical methods, more so in the

quantum deep, it seems more natural to apply an analytic (:algebraic)

way (with symbols –recall here, for instance, “Feynman diagrams”–

viz. a “Leibnizian” manner of looking at the things, in focus), not that

one of the standard theory (:“spatial-newtonian”).

Yet, what actually leads to the same thing,

(4.27)

it is quite natural to try to concoct, at each particular case, under

consideration, the appropriate “differential geometric”-machinery

(viz. “differential triad”), to cope with the problem at issue.

In toto, we could also mention herewith, a basic moral of ADG, in what actually

concerns Quantum Field Theory. That is,

(4.28)

we should not relate any (quantum) field theory with the existence of an

a d h o c given “continuum” (:“space-time manifold”, whatsoever); this,

of course, to the extent, at least, that we wish to apply therein (classical)

differential geometry (CDG), since, in that context, the preponderant and

really instrumental issue is, in effect, the relevant (differential-geometric)

technique and not(!) the underlying space.

So, in other words, it is important to afford, in that context, a “differential-

geometric” machinery, irrespective of the way the latter might have been displayed

(cf., for instance, the preceding two examples), while, in any case, this particular
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way, “spatial,” or not (loc.cit.), should not intervene in the whole process, this

being especially significant, when referred to the quantum régime (see also the

relevant comments already in (1.19) in the preceding).

Indeed, in this regard, we can still remark that,

(4.29)

as it concerns the “infinitely small” (Feynman), the (differential)

“geometry,” in the way, at least, that we use to look at it (viz. in the

“newtonian-cartesian” one), is no more valid(!), since the same –namely,

the “geometry” becomes –in point of fact, appears to us –in that deep,

more “physical”(!), as it always is, for that matter, viz. “relational”

(:algebraic-analytic)!

Exactly at this point, we might also recall the quite relevant remarks here of

Finkelstein (1972, p. 155), in that (emphasis below is ours);

(4.30)
“Physics was dominated by the Cartesian epistemology untill the

quantum theory.”

Relate the above with our previous considerations in Scholium 2.1 in the preceding.

Yet, as a further illumination of the point of view of the whole formalism of ADG,

we have to point out/clarify, herewith, once more, two fundamental issues of the

aforesaid perspective, that also provide a potential outstanding application of the

above formalism to ever present problems, thus far, of quantum gravity. That is,

we have to note, in that context, that:

i) One can employ ADG, as a (differential) “geometry,” in the classical sense

of the latter term, even in the quantum deep(!), provided, of course we accept the

following correspondence/“identification” (:axiomatic),

(4.31) fields ←→ vector sheaves,

that is, in other words what we have already called elsewhere “Selesnick’s corre-

spondence” (see, for instance, Mallios (2005, Chapt. II), for a detailed account of

this subject matter).

ii) The same “geometry,” as above (viz. always, within the framework of

ADG), can still be construed, as a “dynamical variable,” as well (see (2.6), in

conjunction with (2.13), as well as, with (2.12)).
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On the other hand, another technical issue, that should also be pointed out in

this regard, is that, it, very likely, seems that;

there is no actually need to

(4.32.1) “quantize analysis,”

as it concerns, in particular, its topological-linear character (this being

the source of the Calculus), since the inherent/deeper nature of the same

(:of the “analysis”), namely, the “algebraic,” or even the, so to say,

“leibnizian” one, is already, viz., by its very definition, “quantized”!

Yet, by further commenting on our last claim, as above, we still note that;

(4.33)
there is no, in effect, according to the same definitions, any “infinite” in

(pure) algebra!

So it is, therefore, in “geometry”/topology (viz. in the so-called, “infinite”(!), a

consequence, in fact, of the latter perspective), that we are, actually, entangled,

when confronting with the quantum deep (:“small distances”). Consequently, our

systematic endeavor, up to this day, in one way or another, to succeed in getting

an appropriate “algebraization” of the whole scenario!

5. Scholium (:more on the “newtonian spark”).− We usually curve a linear

structure, by “localizing” it (manifolds); in point of fact, this is a quite general

device, referring, irrespective of the dimension (finite or infinite), to the (topolog-

ical) vector space-model of our (cartesian) “geometry.” In the case of Analysis,

an extraordinary issue, in that context, is that the classical Calculus that tradition-

ally was hospitalized in (even, emanated from) topological vector space-structures

(:euclidean spaces) still survived after this transport, a sine qua non, of course, of

the justification, for that matter, of the previous movement, suggested, indeed, by

particular important applications. Notwithstanding, a fundamental moral of the

whole issue of ADG is that;
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(5.1)

the real corner-stone of the previous total enterprize is, in effect, what we

have already called in the foregoing, the “newtonian spark,” in that

context, a fact that might also be paralleled with the famous archimedean

demand, for a pedestal (:“�óς µoί πα̃ στ ω̃ καί τ άν γ α̃ν κινάσω—

“give me somewhere to stand and I shall move the earth”).

That is, in other words, following now Leibniz, in what actually concerns (classical)

differential geometry (CDG), what one virtually needs is to provide (according to

ADG) the appropriate, concerning the particular problem, at issue, “differential-

geometric mechanism”(!).

Furthermore, what is here of a particular significance, having also important

potential applications (even, very likely(!), in quantum gravity too), is that:

(5.2)

the aforesaid “differential-geometric mechanism,” in the sense of ADG,

does not actually depend, at all(!), on any space, as it was the case, so far,

for the classical theory (CDG), the same mechanism referred now directly

to the (“geometric”) objects, that live on the “space.”

Indeed, the latter issue in the above remarks, as in (5.2), is, most likely, what

already Leibniz, at his time, was looking for! (See, for instance, Bourbaki et al.

(1975, Chapt. I; Note historique, p. 161, ft. 1), or even Mallios (2004, (2.1), along

with comments following it)).

Thus, by further commenting on (5.2), we can still say, based also on our

previous considerations in Mallios (2006a), that;

(5.3)

What one actually perceives appears to be the “sheafification” of a “local

aspect/information” pertaining to the particular subject matter in focus.

Besides,

(5.3.1)

the way we get a “local information,” may, in principle, be

entirely different, in character, from the mechanism (:inherent

law–“physical”/relational procedure), which governs (hence,

the manner too, we should essentially employ the aforesaid

“sheafification,” viz. the global aspect of ) that local information.

The above explains too what one essentially encounters, in connection with what

we have called in the preceding “newtonian spark.”
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Now, the replacement of a “field”

(5.4) (E,D)

(cf. (2.15)), by its corresponding “Heisenberg (:“matrix”) picture,” viz. by the

“field”

(5.5) (EndE,DEndE ),

(see Mallios (2004, (9.20)), along with Mallios (2005, Vol. II, Chapt. II; (5.8),

(5.11))), hence, via its “principal sheaf” version,

(5.6) (AutE,DEndE |AutE ),

as well, may still be viewed, as being in accord with the “impossibility of having

a “relativistic quantum field,” defined at a point”(!); see, for instance, Bogolubov

et al. (1975, p. 282, §10.4, p. 283, Theorem (Wightman) 10.6).

On the other hand, (5.3.1), as above, might also be construed, as another

effectuation of the classical “local commutativity,” or “microscopic causal-

ity” “microcausality” yet, “principle of relativistic microcausality,” or even

“Einstein’s locality.”

On the other hand, by further meditating, a bit more, on our previous scholium

in (5.3.1), we can actually reformulate it, by remarking in particular that:

(5.7)

the deeper (algebraic) mechanism that might be inherent in (:esoteric to)

a given local information (alias, a given local data), may in general be

independent of the way one has actually drawn this information

(:the local data, concerned).

Yet, in connection with the above remarks in (5.7) and our issue in (4.3), one may

recall, in this regard, Wittgenstein’s motto (1997, p. 74; 6.54), that;

(5.8) “. . . [one must]. . . throw away the ladder after he has climbed up it.”

Now, as a fundamental spinoff of the above, one can still conceive, for instance,

the classical (Machian) perspective of an
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(5.9) “action at a distance”(!).

6. Concluding Remarks (the “continuum”)− The purpose of this final

section is to make clear, once more, that:

(6.1)

the notion of the “continuum,” as a “foundational element” is not actually

the case, when physically speaking, at least (!) (and not only (!), see e.g.

(6.5) in the sequel).

Now, the inverted commas put on the word continuum, as above, refer, of course,

to the way we usually understand that notion in the familiar terminology of the

classical theory, where, in point of fact, we wish to ascribe to it a physical substance,

that is, equivalently, to endow it with a physical meaning. And just hear one has

the crux of the problem: That is,

(6.2)

we are actually influenced by our mathematical terminology–conception,

in what virtually concerns the word “continuum”, i.e., the “cartesian,”

in point of fact, perspective of the so-called “space-time.”

Thus, in other words, we make the following identifications:

(6.3)
“physical space” ←→ mathematical “space”/“continuum,” viz. some

R
n, as a (finite dimensional) topological vector space.

However, it is exactly the above identifications, that is really the source of the

problems: Indeed, as we have already remarked in other places (cf., for instance,

Mallios (2004, (1.4), or even (3.1))),

(6.4)

“physical space” is what virtually constitutes it, that is, in other words,

what we may call, à la Leibniz, the “geometrical objects” themselves,

that make up, what in effect, we perceive, as “space,” in the large, as

well as, in the small.

Therefore, in that respect, the substance of the “physical space,” as above, is thus

discrete/granular, hence not at all corresponding to something “continuous,” viz.

not-discrete, when physically/conceptually speaking. On the other hand, when

mathematically speaking, a set is already, by its very definition, being thus “point-

wise determined,” absolutely “discrete,” in character!
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Thus, by referring to the mathematical notion of the “continuum,” as an R
n,

n ∈ N,

(6.5)

we note that the so-called “continuum” is, technically speaking, viz. as a

mathematical term, our own definition of an R
n (n ∈ N), as already said,

viewed herewith not just, as a discrete set, as it actually is, for that matter,

but now, as a topological (vector) space, this particular (mathematical)

“structure” on (the set) R
n being also the source of the (newtonian)

Calculus!

In this connection, we are thus influenced, by our own mathematical experience

of the concept of the “continuum,” in the way we defined it, as above, that is, as

a particular finite dimensional (Hausdorff ) topological vector space, a point of

view that we also attribute, in turn, to what we actually perceive, as a “physical

space,” this being further construed, as another “continuum,” this time, however,

as a physical one (!), based rather on a “dynamically/kinematiccaly” ascribed

description of the (physical) world; alas, something here in complete conflict with

our actual (:experimental) experience, as it virtually concerns, at least, the quantum

régime (see also, for instance, (4.30) in the preceding).

Now, in this context, the previous items;

(6.6)

“dynamical-kinematical description” of the (physical) world, differential

equations-theoretic point of view, Calculus, and “space-time continuum”

are, in effect, intimately related and, in point of fact, tautosemous,

in substance.

Strictly speaking, as a matter of fact,

(6.7)

Calculus is the source/cause of the first two items, as above, while, in turn,

the same (Calculus) is the spin-off, as already said, of the newtonian-

cartesian, so far, definition of the “space,” that is, of the so-called

“geometrical” perception of it, yet, the outcome of the same “space-time

continuum”≡ R
n (cf. (6.5)).

On the other hand, the above differential part of the Calculus, viz. “differentia-

tion of functions,” in principle, presupposes “good(– (:smooth) differentiable)–

functions,” something that essentially depends on the “local behavior” of the
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functions concerned; hence, a fact that directly refers to the local nature of the

domain of definition of the same functions, that is, to the local structure (:“geom-

etry”) of the “euclidean space,” R
n, itself. Consequently,

(6.8)

we are actually entangled with the way the differential calculus

(:“differentiation,” as a mechanism) is supplied (cf. (6.5)), therefore,

the type of the “differentiable” functions that are thereby involved, or, in

other words, that are “locally” defined on that particular “space”

(extremely important, as well as, effective (!), anyhow, concerning the

classical theory).

However, the applications of the same differential calculus, as above, in the domain

of (classical) differential geometry, as a means of study (:working instrument) in

that particular discipline, namely, that what we have already considered in the pre-

ceding, a “differential-geometric machinery,” yet, in other words, a “geometrical

calculus,” à la Leibniz (see 1.17)), refers, in point of fact, to the very “geometrical

objects” (Leibniz, loc. cit.), the same being actually (Leibniz, ibid., Riemann, see

(Mallios, 2004, (1.3))) independent of any “space,” in the sense, at least, of (6.5),

as above!

On the other hand, it is reasonable to think that,

(6.9)

the very character/substance of what we may call

(6.9.1)
“physical space” (see also (1.1)) is, in principle, the same,

both in the large, as well as, in the small.

We are thus led to a dissonance, by applying our usual classical

representation of the physical space (in the large), as an R
n, irrespective,

of course, of the tremendous success, thus far, of the latter perspective,

when realizing, on the other hand (see also, for instance, (2.2), as well as,

(4.30) in the preceding), that the same (physical) “space” is virtually quite

different from what we are confronted with, when looking at the quantum

régime, as it concerns the aforesaid classical perspective; see also

Mallios (2004: (8.10), along with (8.11)).

Consequently, the appeared inconveniences (:“singularities”), regarding, of

course, applications of classical differential geometry, as a means of study, in
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that context, of the physical space/geometry” in the small, that is, to say, physical

laws/“fields” (see also loc. cit., (3.21.1)) at the “quantum resolution.”

Thus, the “physical space,” as a whole, yet, according to recent advances in

theoretical physics, concerning, in particular, the quantum deep, does not seem

to be the usual “space-time” manifold, in the sense of the classical differential

geometry–theory of smooth (:C∞-)manifolds. Indeed, it appears that we have

therein,

(6.10)

something foamy, very singular, or even something like what we may

call, a “singularity manifold,” to refer, in that respect, to a rather recent

utterance of R. Penrose, pertaining to a “true theory of quantumgravity,”

by replacing the “present concept of spacetime at a singularity.” (See

also, for instance, Mallios (2004, (10.8), along with the subsequent

discussion therein]).

Thus, concerning the “infinitely small,” or else “quantum resolution,”

(6.11)

the “geometry,” in the way we usually look at it (viz. in the “newtonian-

cartesian” manner), is no more valid (!), in that context, since, at that

deep, the same becomes thus, even to our senses (!), more “physical,” as,

in point of fact, it always is, for that matter (see also (1.1) in the

preceding, along with (6.9) above), viz. “relational” (:algebraic-analytic);

the latter aspect is still a fundamental issue, in effect, of our experience,

thus far, from ADG, as well!

Indeed, as already advocated in several places in the preceding, working within

the context of ADG, we are able to look at fundamental concepts of physics, as,

for instance, particles/fields (see also Mallios (2006b, (3.2))) etc, without being

compelled to stick to such “technical” notions, as e.g. “space-time” (!). In this

regard, see also, for instance, (1.8) in the preceding, yet, loc. cit. (1.6).

Yet, in this connection, we are thus very likely, led to conclude that the

entanglement of the “manifold” perspective in nowadays physics, especially, in

the quantum domain, is to be attributed, in effect, to the relation of the former with

the notion of “differential”; indeed, the latter is the main function, that is actually

applied in our relevant rationale, in that context, while finally, as an upshot of
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the classical theory (:differential geometry), we are usually of the opinion that the

same manifold concept is thus the unique(!) source of the notion of a “derivative,”

covariant or not! Therefore, the significance, hereupon of the new proposal, as this

is, provided, by ADG: That is, once more, we realize that

(6.12)

to have a connection, we do not actually need a “manifold,” even if we

momentarily borrow from such a concept the “infinitesimal

(:“newtonian”) spark! The latter constitutes, in point of fact,

the central moral of the entire study of ADG.

Thus, by looking at the standard question (cf., for instance, Sharpe (1997, p. 2,

ft. 2)),

(6.13) “what geometry on a manifold supports physics?,”

we can combine it now with the fundamental moral of ADG (see e.g. (6.12), as

above, along with Mallios (2004, (1.2), (3.21.2)), yet, Mallios (1998b)), that, in

point of fact,

(6.14) differential geometry means, in effect, connection.

Consequently, blending the previous two aspects, as in (6.13) and (6.14), we

are thus led to a response to (6.13), in the sense of affording a pertinent choice

of “A,” more precisely speaking, the associated with it “differential triad” and

the concomitant “differential-geometric mechanism,” à la ADG, suitable to the

particular problem at issue; see thus, for instance, Subsections 4. (a), 4. (b) in

the preceding, along with Mallios (1998b), p. 174; concluding remarks). In this

regard, see also the latest relevant account in Mallios and Raptis (2005).

“Le caractère propre des méthodes . . . consiste dans l’emploi d’un
petit nombre de principes généraux . . . ; et les conséquences sont
d’autant plus étendues que les principes eux-mêmes ont plus de
généralité.”— G. Darboux

“. . . unification of interactions is achieved through unification of
ideas.”— V. Knizhnik
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6.(a). ADG vis-à-vis a Unified Field Theory.− The quite ambitious(!) title

of the present Subsection is rooted, in point of fact, on our previous comments in

(6.9.1) and on the very essence of the point of view of the same Abstract Differential

Geometry (ADG), as the latter can be applied, in that context, in conjunction, for

instance, with Rosinger’s theory of “generalized functions”: The technical part of

the aforesaid scheme, hinted at herewith, has been already expounded in Mallios

and Rosinger (1999,2001); in this connection, see also our previous discussion

in Subsection 4.(a) in the foregoing, along with Mallios (2006b, (5.20), (5.21)),

as well as, (Mallios, 2004, Sections 6, 8; see, in particular, (8.8) therein, or even

(8.11), yet, Section 10). Moreover, cf. also Mallios (2005, Vol. II, Chapt. IV;

Sections 5 and 6, along with Section 10 therein, see e.g. (10.29)).

Now, as already said, the preceding just hint at a potential confrontation with

the second issue in the title of this Subsection, through the machinery of ADG,

that is, to say, in terms of the techniques of the classical differential geometry,

being, however, freed now from the ever disturbing/pestilential “singularities,” and

the like, of the classical approach to the problem at issue. Of course, this is due

here, as already explained, throughout the preceding, to the absence, according to

ADG, of any supporting “space,” that would also exclusively supply (:generate)

the “differential-geometric” machinery employed, in that context (see the relevant

citations, as before), a situation inherent, in effect, in the classical theory (CDG;

cf. the previous Section 5, along with the concluding remarks above, preceding

the present Subsection).
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